Wednesday, May 23, 2007

半导体激光器的发展及其应用

半导体激光器是以直接带隙半导体材料构成的Pn结或Pin结为工作物质的一种小型化激光器.半导体激光工作物质有几十种,目前已制成激光器的半导体材料有砷化稼(GaAs)、砷化锢(InAs)、锑化锢(InSb)、硫化锅(cds)、蹄化福(CdTe)、硒化铅(PbSe)、啼化铅(PhTe)、铝稼砷(A1xGa-As)、锢磷砷(In-PxAS)等.

    半导体激光器的激励方式主要有三种,即电注人式、光泵式和高能电子束激励式.

    绝大多数半导体激光器的激励方式是电注入,即给Pn结加正向电压,以使在结平面区域产生受激发射,也就是说是个正向偏置的二极管,因此半导体激光器又称为半导体激光二极管.对半导体来说,由于电子是在各能带之间进行跃迁,而不是在分立的能级之间跃迁,所以跃迁能量不是个确定值,这使得半导体激光器的输出波长展布在一个很宽的范围上.它们所发出的波长在3-34pm之间.其波长范围决定于所用材料的能带间隙,最常见的是AlGaA:双异质结激光器,其输出波长为750-890nm.

    世界上第一只半导体激光器是1962年问世的,经过几十年来的研究,半导体激光器得到了惊人的发展,它的波长从红外、红光到蓝绿光,被盖范围逐渐扩大,各项性能参数也有了很大的提高,其制作技术经历了由扩散法到液相外延法(LPE),气相外延法(VPE),分子束外延法(MBE),MOCVD方法(金属有机化合物汽相淀积),化学束外延(CBE)以及它们的各种结合型等多种工艺.其激射闭值电流由几百mA降到几十mA,直到亚mA,其寿命由几百到几万小时,乃至百万小时从最初的低温(77K)下运转发展到宰la下连续工作,输出功率由几毫瓦提高到千瓦级(阵列器件)它具有效率高、体积小、重量轻、结构简单、能将电能直接转换为激光能、功率转换效率高(已达10%以上、最大可达50%).便于直接调制、省电等优点,因此应用领域日益扩大.目前,固定波长半导体激光器的使用数量居所有激光器之首,某些重要的应用领域过去常用的其他激光器,已逐渐为半导体激光器所取代.

    半导体激光器最大的缺点是:激光性能受温度影响大,光束的发散角较大(一般在几度到20度之间),所以在方向性、单色性和相干性等方面较差.但随着科学技术的迅速发展,半导体激光器的研究正向纵深方向推进,半导体激光器的性能在不断地提高.目前半导体激光器的功率可以达到很高的水平,而且光束质量也有了很大的提高.以半导体激光器为核心的半导体光电子技术在21世纪的信息社会中将取得更大的进展,发挥更大的作用.

    本文对半导体激光器的工作原理、发展历史和应用前景作一简略的介绍.

    2  半导体激光器的工作原理

    半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件:(1)增益条件:建立起激射媒质(有源区)内载流子的反转分布。在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注人必要的载流子来实现,将电子从能量较低的价带激发到能量较高的导带中去.当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用.

    (2)要实际获得相干受激辐射,必须使受激辐射在光学谐振腔内得到多次反馈而形成激光振荡,激光器的谐振腔是由半导体晶体的自然解理面作为反射镜形成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜.对F-p腔(法布里一拍罗腔)半导体激光器可以很方便地利用晶体的与P一n结平面相垂直的自然解理面构成F一P腔.

    (3)为了形成稳定振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔引起的光损耗及从腔面的激光输出等引起的损耗,不断增加腔内的光场.这就必须要有足够强的电流注入,即有足够的粒子数反转,粒子数反转程度越高,得到的增益就越大,即要求必须满足一定的电流阀值条件.当激光器达到阀值,具有特定波长的光就能在腔内谐振并被放大,最后形成激光而连续地输出.可见在半导体激光器中,电子和空穴的偶极子跃迁是基本的光发射和光放大过程对于新型半导体激光器而言,人们目前公认量子阱是半导体激光器发展的根本动力.量子线和量子点能否充分利用量子效应的课题已延至本世纪,科学家们已尝试用自组织结构在各种材料中制作量子点,而GaInN量子点已用于半导体激光器.另外,科学家也已经做出了另一类受激辐射过程的量子级联激光器,这种受激辐射基于从半导体导带的一个次能级到同一能带更低一级状态的跃迁,由于只有导带中的电子参与这种过程,因此它是单极性器件.

    3  半导体激光器的发展历史

    20世纪60年代初期的半导体激光器是同质结型激光器,它是在一种材料上制作的pn结二极管在正向大电流注人下,电子不断地向p区注人,空穴不断地向n区注入.于是,在原来的pn结耗尽区内实现了载流子分布的反转,由于电子的迁移速度比空穴的迁移速度快,在有源区发生辐射、复合,发射出荧光,在一定的条件下发生激光,这是一种只能以脉冲形式工作的半导体激光器.

    半导体激光器发展的第二阶段是异质结构半导体激光器,它是由两种不同带隙的半导体材料薄层,如G&As, GaAlAs所组成,最先出现的是单异质结构激光器(1969年).单异质结注人型激光器(SHLD)是利用异质结提供的势垒把注入电子限制在GaAsP一N结的P区之内,以此来降低阀值电流密度,其数值比同质结激光器降低了一个数量级,但单异质结激光器仍不能在室温下连续工作.

    1970年,实现了激光波长为9000A.室温连续工作的双异质结GaA(砷化稼一稼铝砷)激光器.双异质结激光器(DHL)的诞生使可用波段不断拓宽,线宽和调谐性能逐步提高,其结构的特点是在P型和n型材料之间生长了仅有0.2Eam厚的,不掺杂的,具有较窄能隙材料的一个薄层,因此注人的载流子被限制在该区域内(有源区),因而注人较少的电流就可以实现载流子数的反转.在半导体激光器件中,目前比较成熟、性能较好、应用较广的是具有双异质结构的电注人式G&A。二极管激光器.

    随着异质结激光器的研究发展,人们想到如果将超薄膜(<20nm)的半导体层作为激光器的激括层,以致于能够产生量子效应,结果会是怎么样?再加之由于MBE,MOCVD技术的成就,于是,在1978年出现了世界上第一只半导体量子阱激光器(QWL),它大幅度地提高了半导体激光器的各种性能.后来,又由于MOCVD,MBE生长技术的成熟,能生长出高质量超精细薄层材料,之后,便成功地研制出了性能更加良好的量子阱激光器,量子阱半导体激光器与双异质结(DH)激光器相比,具有阑值电流低、输出功率高,频率响应好,光谱线窄和温度稳定性好和较高的电光转换效率等许多优点.

    QWL在结构上的特点是它的有源区是由多个或单个阱宽约为100人的势阱所组成,由于势阱宽度小于材料中电子的德布罗意波的波长,产生了量子效应,连续的能带分裂为子能级.因此,特别有利于载流子的有效填充,所需要的激射阅值电流特别低.半导体激光器的结构中应用的主要是单、多量子阱,单量子阱(SQW)激光器的结构基本上就是把普通双异质结(DH)激光器的有源层厚度做成数十nm以下的一种激光器,通常把势垒较厚以致于相邻势阱中电子波函数不发生交迭的周期结构称为多量子阱(MQW).量子阱激光器单个输出功率现已大于1w,承受的功率密度已达lOMW/cm3以上而为了得到更大的输出功率,通常可以把许多单个半导体激光器组合在一起形成半导体激光器列阵。

    因此,量子阱激光器当采用阵列式集成结构时,输出功率则可达到l00w以上.近年来,高功率半导体激光器(特别是阵列器件)飞速发展,已经推出的产品有连续输出功率5W,10W,20W和30W的激光器阵列.脉冲工作的半导体激光器峰值输出功率50w,120W和1500W的阵列也已经商品化.一个4.5cm×9cm的二维阵列,其峰值输出功率已经超过45BW.峰值输出功率为350KW的二维阵列也已间世,从20世纪70年代末开始,半导体激光器明显向着两个方向发展,一类是以传递信息为目的的信息型激光器.另一类是以提高光功率为目的的功率型激光器.在泵浦固体激光器等应用的推动下,高功率半导体激光器(连续输出功率在100以上,脉冲输出功率在5W以上,均可称之谓高功率半导体激光器)在20世纪90年代取得了突破性进展,其标志是半导体激光器的输出功率显著增加,国外千瓦级的高功率半导体激光器已经商品化,国内样品器件输出已达到600W[61.如果从激光波段的被扩展的角度来看,先是红外半导体激光器,接着是670nm红光半导体激光器大量进人应用,接着,波长为650nm,635nm的问世,蓝绿光、蓝光半导体激光器也相继研制成功,l0mw量级的紫光乃至紫外光半导体激光器,也在加紧研制中为适应各种应用而发展起来的半导体激光器还有可调谐半导体激光器,电子束激励半导体激光器以及作为"集成光路"的最好光源的分布反馈激光器(DFB一LD),分布布喇格反射式激光器(DBR一LD)和集成双波导激光器.另外,还有高功率无铝激光器(从半导体激光器中除去铝,以获得更高输出功率,更长寿命和更低造价的管子)、中红外半导体激光器和量子级联激光器等等.其中,可调谐半导体激光器是通过外加的电场、磁场、温度、压力、掺杂盆等改变激光的波长,可以很方便地对输出光束进行调制.分布反馈(DFB)式半导体激光器是伴随光纤通信和集成光学回路的发展而出现的,它于1991年研制成功,分布反馈式半导体激光器完全实现了单纵模运作,在相干技术领域中又开辟了巨大的应用前景它是一种无腔行波激光器,激光振荡是由周期结构(或衍射光栅)形成光藕合提供的,不再由解理面构成的谐振腔来提供反馈,优点是易于获得单模单频输出,容易与纤维光缆、调制器等辆合,特别适宜作集成光路的光源.

    单极性注入的半导体激光器是利用在导带内(或价带内)子能级间的热电子光跃迁以实现受激光发射,自然要使导带和价带内存在子能级或子能带,这就必须采用量子阱结构.单极性注人激光器能获得大的光功率输出,是一种商效率和超商速响应的半导体激光器,并对发展硅基激光器及短波激光器很有利.量子级联激光器的发明大大简化了在中红外到远红外这样宽波长范围内产生特定波长激光的途径.它只用同一种材料,根据层的厚度不同就能得到上述波长范围内的各种波长的激光.同传统半导体激光器相比,这种激光器不需冷却系统,可以在室温下稳定操作.低维(量子线和量子点)激光器的研究发展也很快,日本okayama的GaInAsP/Inp长波长量子线(Qw+)激光器已做到90kCW工作条件下Im  =6A,l=37A/cm2并有很高的量子效率.众多科研单位正在研制自组装量子点(QD)激光器,目前该QDLD已具有了高密度,高均匀性和高发射功率.由于实际需要,半导体激光器的发展主要是围绕着降低阔值电流密度、延长工作寿命、实现室温连续工作,以及获得单模、单频、窄线宽和发展各种不同激射波长的器件进行的.

    20世纪90年代出现并特别值得一提的是面发射激光器(SEL),早在1977年,人们就提出了所谓的面发射激光器,并于1979年做出了第一个器件,1987年做出了用光泵浦的780nm的面发射激光器.1998年GaInAIP/GaA。面发射激光器在室温下达到亚毫安的网电流,8mW的输出功率和11%的转换效率。前面谈到的半导体激光器,从腔体结构上来说,不论是F一P(法布里一泊罗)腔或是DBR(分布布拉格反射式)腔,激光输出都是在水平方向,统称为水平腔结构.它们都是沿着衬底片的平行方向出光的.而面发射激光器却是在芯片上下表面镀上反射膜构成了垂直方向的F一p腔,光输出沿着垂直于衬底片的方向发出,垂直腔面发射半导体激光器(VCSEIS)是一种新型的量子阱激光器,它的激射阔值电流低,输出光的方向性好,藕合效率高,能得到相当强的光功率输出,垂直腔面发射激光器已实现了工作温度最高达71摄氏度. 20世纪90年代末,面发射激光器和垂直腔面发射激光器得到了迅速的发展,且已考虑了在超并行光电子学中的多种应用.980mn,850nm和780nm的器件在光学系统中已经实用化.目前,垂直腔面发射激光器已用于千兆位以太网的高速网络。

    为了满足21世纪信息传输宽带化、信息处理高速化、信息存储大容量以及军用装备小型、高精度化等需要,半导体激光器的发展趋势主要在高速宽带LD、大功率ID,短波长LD,盆子线和量子点激光器、中红外LD等方面.目前,在这些方面取得了一系列重大的成果.

    4  半导体激光器的应用

    半导体激光器是成熟较早、进展较快的一类激光器,由于它的波长范围宽,制作简单、成本低、易于大量生产,并且由于体积小、重量轻、寿命长,因此,品种发展快,应用范围广,目前已超过300种,半导体激光器的最主要应用领域是Gb局域网,850mn波长的半导体激光器适用于)1Gb/s。局域网,1300mn-1550nm波长的半导体激光器适用于1OGb局域网系统.半导体激光器的应用范围覆盖了整个光电子学领域,已成为当今光电子科学的核心技术.半导体激光器在激光测距、激光雷达、激光通信、激光模拟武器、激光警戒、激光制导跟踪、引燃引爆、自动控制、检测仪器等方面获得了广泛的应用,形成了广阔的市场。

    1978年,半导体激光器开始应用于光纤通信系统,半导体激光器可以作为光纤通信的光源和指示器以及通过大规模集成电路平面工艺组成光电子系统.由于半导体激光器有着超小型、高效率和高速工作的优异特点,所以这类器件的发展,一开始就和光通信技术紧密结合在一起,它在光通信、光变换、光互连、并行光波系统、光信息处理和光存贮、光计算机外部设备的光祸合等方面有重要用途.半导体激光器的问世极大地推动了信息光电子技术的发展,到如今,它是当前光通信领域中发展最快、最为重要的激光光纤通信的重要光源.半导体激光器再加上低损耗光纤,对光纤通信产生了重大影响,并加速了它的发展.因此可以说,没有半导体激光器的出现,就没有当今的光通信.GaAs/GaAlA。双异质结激光器是光纤通信和大气通信的重要光源,如今,凡是长距离、大容量的光信息传输系统无不都采用分布反馈式半导体激光器(DFB一LD).半导体激光器也广泛地应用于光盘技术中,光盘技术是集计算技术、激光技术和数字通信技术于一体的综合性技术.是大容t.高密度、快速有效和低成本的信息存储手段,它需要半导体激光器产生的光束将信息写人和读出.

    下面我们具体来看看几种常用的半导体激光器的应用:

    量子阱半导体大功率激光器在精密机械零件的激光加工方面有重要应用,同时也成为固体激光器最理想的、高效率泵浦光源.由于它的高效率、高可靠性和小型化的优点,导致了固体激光器的不断更新.

    在印刷业和医学领域,高功率半导体激光器也有应用.另外,如长波长激光器(1976年,人们用GaInAsP/InP实现了长波长激光器)用于光通信,短波长激光器用于光盘读出.自从NaKamuxa实现了GaInN/GaN蓝光激光器,可见光半导体激光器在光盘系统中得到了广泛应用,如CD播放器,DVD系统和高密度光存储器可见光面发射激光器在光盘、打印机、显示器中都有着很重要的应用,特别是红光、绿光和蓝光面发射激光器的应用更广泛.蓝绿光半导体激光器用于水下通信、激光打印、高密度信息读写、深水探测及应用于大屏幕彩色显示和高清晰度彩色电视机中.总之,可见光半导体激光器在用作彩色显示器光源、光存贮的读出和写人,激光打印、激光印刷、高密度光盘存储系统、条码读出器以及固体激光器的泵浦源等方面有着广泛的用途.量子级联激光的新型激光器应用于环境检测和医检领域.另外,由于半导体激光器可以通过改变磁场或调节电流实现波长调谐,且已经可以获得线宽很窄的激光输出,因此利用半导体激光器可以进行高分辨光谱研究.可调谐激光器是深人研究物质结构而迅速发展的激光光谱学的重要工具大功率中红外(3.5lm)LD在红外对抗、红外照明、激光雷达、大气窗口、自由空间通信、大气监视和化学光谱学等方面有广泛的应用.

    绿光到紫外光的垂直腔面发射器在光电子学中得到了广泛的应用,如超高密度、光存储.近场光学方案被认为是实现高密度光存储的重要手段.垂直腔面发射激光器还可用在全色平板显示、大面积发射、照明、光信号、光装饰、紫外光刻、激光加工和医疗等方面、如前所述,半导体激光器自20世纪80年代初以来,由于取得了DFB动态单纵模激光器的研制成功和实用化,量子阱和应变层量子阱激光器的出现,大功率激光器及其列阵的进展,可见光激光器的研制成功,面发射激光器的实现、单极性注人半导体激光器的研制等等一系列的重大突破,半导体激光器的应用越来越广泛,半导体激光器已成为激光产业的主要组成部分,目前已成为各国发展信息、通信、家电产业及军事装备不可缺少的重要基础器件.

    ----朗讯科技公司下属研发机构贝尔实验室的科学家们近日成功研制出世界上首款能够在红外波长光谱范围内持续可靠地发射光的新型半导体激光器。新设备克服了原有宽带激光发射过程中存在的缺陷,在先进光纤通信和感光化学探测器等领域有着广阔的潜在应用。相关的制造技术可望成为未来用于光纤的高性能半导体激光器的基础。

    ----有关新激光器性质的论文刊登2002年2月21日出版的《自然》杂志上。文章主要作者、贝尔实验室物理学家Claire  Gmachl断言:"超宽带半导体激光器可用来制造高度敏感的万用探测器,以探测大气中的细微污染痕迹,还可用于制造诸如呼吸分析仪等新的医疗诊断工具。"

    ----半导体激光器是一种非常方便的光源,具备紧凑、耐用、便携和强大等特点。然而,典型半导体激光器通常为窄带设备,只能以特有波长发出单色光。相比之下,超宽带激光器具有显著的优势,可以同时在更宽的光谱范围内选取波长。制造出可在范围广泛的操作环境下可靠运行的超宽带激光器正是科学家们长久以来追求的一个目标。

    ----为了研制出新型的激光器,贝尔实验室科学家们采用了650余种光子学中使用的标准半导体材料,并将其叠放在一起组成一个"多层三明治"。这些层面共分为36组,其中不同层面组在感光属性方面有着细微的差别,并在特有的短波长范围内生成光,同时与其他各组之间保持透明.所有这些层面组结合在一起,就能发射出宽带激光。

    ----新型激光器隶属于一种称为量子瀑布(QC)激光器的高性能半导体激光器。QC激光器由Federico  Capasso和AlfredCho及其同事于1994年在贝尔实验室发明,其操作过程非常类似于一道电子瀑布。当电流通过激光器时,电子瀑布将沿着能量阶梯奔流而下;每当其撞击一级阶梯时,就会放射出红外光子。这些红外光子在包含电子瀑布的半导体共振器内前后反射,从而激发出其他光子。这一放大过程将产生出很高的输出能量。

    ----超宽带激光器可在6~8微米红外波长范围产生1.3瓦的峰值能量。Gmachl指出:"从理论上讲,波长范围可以更宽或更窄。选择6~8微米范围波长发射激光,目的是更令人信服地演示我们的想法。未来,我们可以根据诸如光纤应用等具体应用的特定需求量身定制激光器。<br /><hr /> Orignal From: <a href="http://www.rayscience.com/blog/?p=96" target=_blank>半导体激光器的发展及其应用</a><br />

0 comments:

Powered By Blogger